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Abstract

In the present work we propose a new realized volatility model to directly model and
forecast the time series behavior of volatility. The purpose is to obtain a conditional
volatility model based on realized volatility which is able to reproduce the memory per-
sistence observed in the data but, at the same time, remains parsimonious and easy to
estimate. Inspired by the Heterogeneous Market Hypothesis and the asymmetric propa-
gation of volatility between long and short time horizons, we propose an additive cascade
of different volatility components generated by the actions of different types of mar-
ket participants. This additive volatility cascade leads to a simple AR-type model in
the realized volatility with the feature of considering volatilities realized over different
time horizons. We term this model, Heterogeneous Autoregressive model of the Realized
Volatility (HAR-RV). In spite of the simplicity of its structure, simulation results seem
to confirm that the HAR-RV model successfully achieves the purpose of reproducing the
main empirical features of financial data (long memory, fat tail, self-similarity) in a very
simple and parsimonious way. Preliminary results on the estimation and forecast of the
HAR-RV model on USD/CHF data, show remarkably good out of sample forecasting
performance which steadily and substantially outperforms those of standard models.
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1 Introduction

Despite volatility is one of the prevailing features of financial markets, it is still an ambiguous
term for which there is no unique, universally accepted definition.

So far most of the studies have considered volatility as an unobservable variable and there-
fore used a fully specified conditional mean and conditional variance model to estimate and
analyze that latent volatility. Modelling the unobserved conditional variance was one of the
most prolific topics in the financial literature which led to all ARCH-GARCH developments
and stochastic volatility models. In general this kind of models suffer a twofold weakness:
first, they are not able to replicate main empirical features of financial data; second, the esti-
mation procedure required are often non trivial (especially in the case of stochastic volatility
models).

An alternative approach is to construct an observable proxy for the latent volatility by
using intraday high frequency data. This proxy has recently been labelled Realized Volatility
by Andersen, Bollerslev, Diebold and Labys (2001). In the present work we will employ
the high frequency realized volatility estimators developed in Zumbach, Corsi and Trapletti
(2002) to directly analyze, model and forecast the time series behavior of FX volatility.

The final purpose is to obtain a conditional volatility model based on realized volatility
which is able to account for all the main empirical features observed in the data and, at the
same time, which remains very parsimonious and easy to estimate.

Inspired by the Heterogeneous Market Hypothesis (Müller et al. 1993) which led to the
HARCH model of Müller et al. (1997) and Dacorogna et al. (1998) and by the asymmetric
propagation of volatility between long and short time horizons, we propose an additive cascade
model of different volatility components each of which generated by the actions of different
types of market participants. This additive volatility cascade leads to a simple AR-type model
in the realized volatility with the feature of considering volatilities realized over different
time horizons. We thus term this model, Heterogeneous Autoregressive model of Realized
Volatility (HAR-RV). Surprisingly, in spite of its simplicity and the fact that it does not
formally belong to the class of long memory models, the HAR-RV model is able to reproduce
the same memory persistence observed in volatility as well as many of the other main stylized
facts of financial data.

The rest of the paper is organized as follows. Section 2 briefly reviews the notion of
realized volatility, introducing our notation and discussing the empirical issues related to its
practical implementation. Section 3 describes the data set employed in the study and reviews
the general stylized facts of FX data. Section 4 describes the motivations and derivation of
the HAR-RV model. Section 5 shows the properties of the simulated HAR-RV series while
section 6 describes the estimation and forecast results of the model for the twelve years
USD/CHF series. Section 7 concludes.

2 Realized Volatility Measures

In this section, we introduce notation for instantaneous and integrated latent volatilities, as
well as for realized volatilities aggregated over different horizons. We then briefly discuss the
conditions for realized volatility measures to be a consistent and unbiased estimates of the
latent volatility.
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2.1 Notation

To illustrate the concept of latent integrated volatility 1 for day t σ
(d)
t , lets consider the

following stochastic volatility process2

dp(t) = µ(t)dt + σ(t)dW (t) (1)

where p(t) is the logarithm of instantaneous price, µ(t) is a continuos, finite variation process,
dW (t) is a standard Brownian motion, and σ(t) is a stochastic process independent of dW (t).
For this diffusion process, the integrated volatility associated with day t, is the integral of
the instantaneous volatility over the one day interval (t− 1d; t), where a full 24 hours day is
represented by the time interval 1d,

σ
(d)
t =

(∫ t

t−1d
σ2(ω)dω

)1/2

(2)

Merton (1980) showed that the integrated volatility of a Brownian motion can be approx-
imated to an arbitrary precision using the sum of intraday squared returns. More recently
Andersen et al. (2001), applying the quadratic variation theory, generalized this result to the
class of special (finite mean) semimartingales. This very general class encompasses processes
used in standard arbitrage-free asset pricing applications, such as, Ito diffusions, jump pro-
cesses, and mixed jump diffusions. In fact, under such conditions, the sum of intraday squared
returns converges (as the maximal length of returns go to zero) to the integrated volatility of
the prices allowing us, in principle, to construct an error free estimate of the actual volatility
over a fixed-length time interval. This nonparametric estimator is called realized volatility .
The standard definition (for an equally spaced returns series) of the realized volatility over a
time interval of one day is

RV
(d)
t =

√√√√
M−1∑

j=0

r2
t−j∆ (3)

where ∆ = 1d
M and rt−j∆ = p(t − j∆) − p(t − (j + 1)∆) defines continuously compounded

∆-frequency returns, that is, intraday returns sampled at time interval ∆.
Under those assumptions, the ex-post realized volatility is an unbiased volatility esti-

mator3. Moreover as the sampling frequency from a diffusion (even with non zero mean
process) is increased, the realized volatility provides a consistent nonparametric measure of
the integrated volatility over the fixed time interval4: plimM→∞ RV

(d)
t = σ

(d)
t .

Notice that the definition of realized volatility (as any other definition of historical volatil-
ity) involves two time parameters: the intraday return interval ∆ and the aggregation period
1d. In the following we will also consider latent integrated volatility and realized volatility
viewed over different time horizons longer than one day. These multi-period volatilities will
simply be normalized sums of the one-period realized volatilities (i.e. a simple average of the
daily quantities). For example, in our notation, a weekly realized volatility at time t will be
given by the average

RV
(w)
t =

1
5

(
RV

(d)
t−1d + RV

(d)
t−2d + ... + RV

(d)
t−1w

)
(4)

1Also called actual or notional volatility.
2We use (t) to denote instantaneous variables and subscripts t to denote discrete quantities.
3Formally the zero mean assumption should be made, but the results remains approximately true for

stochastically evolving mean process.
4See Andersen, Bollerslev and Diebold (2002).
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where 1w = 5d indicate a time interval of one week (5 working days). In particular we will
make use of weekly and monthly aggregation periods. Indicating the aggregation period as
an upper script, the notation for weekly integrated and realized volatility will be respectively
σ

(w)
t and RV

(w)
t while a monthly aggregation will be denoted as σ

(m)
t and RV

(m)
t . In the

following, in respect of their actual frequency, all return and volatility quantities are intended
to be annualized.

2.2 Measurement errors

In practice, however, empirical data at very short time scales differ in many ways from the
arbitrage-free continuous time price process making this estimator strongly biased for small
return interval. Because of market microstructure effects, the assumption that log asset
prices evolve as a diffusion process becomes less realistic as the time scale reduces. Thus the
volatility computed with very short time intervals is no longer an unbiased and consistent
estimator of the daily integrated volatility. Harris (1990) Zhou (1996) and Corsi, Zumbach,
Müller and Dacorogna (2001) found that for return intervals less than a few hours, such
a definition is affected by a considerable systematic error. For the FX this deviation has
a positive sign, i.e. the expectation of daily realized volatility computed with returns at
frequencies higher than one hour is systematically larger than the standard deviation of daily
returns. Such bias increases with the sampling frequency: at the 1-minute level, it ranges
from 30% to about 80% (depending on the liquidity of the currency) while at the tick-by-tick
frequency the estimator is two times larger.

Therefore, a trade-off arises: on one hand, statistical considerations would impose a very
high number of return observations to reduce the stochastic error of the measurement, on
the other hand, market microstructure comes into play, introducing a bias that grows as the
sampling frequency increases. Given such a trade-off between measurement error and bias
a simple way out is to choose, for each financial instruments, the shortest return interval at
which the resulting volatility is still not significantly affected by the bias. This approach has
been pursued by Andersen et al. (2001) who settle on a return interval of 30 minutes for the
most highly liquid exchange rates leading to only 48 observations per day5.

A better solution to this trade-off which permits to fully exploit the information contained
in high frequency data, is to have an explicit treatment of the bias. This alternative approach
of directly removes the causes of the bias at the tick-by-tick level, has been first followed by
Zhou (1996), Corsi et al. (2001), Zumbach et al. (2002) and recently by Curci and Corsi (2003).
Given the characteristic of the data and the purpose to keep the approach simple, in this
paper we will study a realized volatility measure obtained as an average of three simple high
frequency volatility estimators proposed in Zumbach et al. (2002). All the three estimators are
computed after having previously applied to the raw series of log prices the simple adaptive
filter proposed in Corsi et al. (2001). This filter consists in an adaptive exponential moving
average implemented with the inhomogeneous time series operators developed in Zumbach
and Müller (2001) which permits a computationally efficient treatment of unevenly spaced
data. The filtering is done in a causal way, namely the parameter of the filter is calibrated
on the autocorrelation structure of past tick-by-tick returns estimated on a moving window.
The reduction of the bias, although not perfect, is quite effective allowing the use of much
higher returns frequency in the construction of the realized volatility estimator.

5This “unbiased return frequency” mainly depends on the interpolation scheme employed. If, as it seems
more appropriate, previous tick would be used, significant bias would still be present at the 30 minutes
frequency and it would disappear only at a frequency of 2-3 hours, leaving us with only 8-12 observation per
day.
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On the type of data employed in this study, each of the three estimators is unbiased and
consistent, and gives essentially the same results. An average of them has been taken only
to further reduce the stochastic error of the final estimator. The daily integrated volatility
can then be estimated exploiting all the information contained in high frequency data, which
provide a measure of superior quality (in terms of measurement error) compared to the one
obtained with 30 minute returns. However, we will explicitly incorporate the fact that, even
with those very high sampling frequency, realized volatility will not be an error-free measure
of ex post latent volatility.

3 Empirical properties of the data

3.1 The data

Our data set consists in almost 12 years (from December ’89 to July 2001) of tick-by-tick
logarithmic middle prices of several FX rates. Log mid prices are computed as averages of
the logarithmic bid and ask quotes obtained from the Reuters FXFX screen. The whole data
set amounts to millions of quotes kindly provided by Olsen&Associates. In the following
univariate analysis we will concentrate on the USD/CHF exchange rate (as a proxy for the
USD/EUR).

In order to avoid to explicitly model the seasonal behavior of trading activity induced
by the weekend we exclude all the realized volatility taking place from Friday 21:00 GMT
to Sunday 22:00 GMT. Moreover, a confounding influence comes from low trading days
associated to fixed and moving holidays. Since the FX market is a world market, it is not
easy to identify on the calendar the relevant holidays which affect such a global market. We
then decided to use a more flexible approach by deleting those days presenting a number
of ticks smaller than a certain threshold. Highly liquid rates such as USD/CHF have an
average daily quotes number on the sample period of approximately 2,800. For this rate we
choose a conservative threshold of 200 ticks per day. With this criteria 41 days (partially
corresponding to the major US holidays) have been removed leaving us with a final sample
of 3,001 full working days. The realized volatility estimates are aggregated at different scales
in order to have realized volatility measures of the integrated volatility over different periods:
daily, weekly and monthly.

Given that the true volatility is not observable there is no direct evaluation criteria of
the quality of the volatility estimators. However, general benchmark criteria can be easily
constructed under the hypothesis of an underlying continuous time diffusion process for the
logarithm price. In fact if the log-price follows a stochastic volatility diffusion as in (1) with
a negligible conditional mean dynamics, the model for daily returns could be written as
r
(d)
t = σ

(d)
t εt where εt ∼ iid N(0, 1). Hence the 1-day return is conditionally Gaussian with

variance equal to the integrated variance. The normality of εt is justified by appealing to
the Central Limit Theorem for mixing process to argue that the returns over a reasonable
aggregation time (such as daily for highly traded assets) should tend towards normality. Then
if RV (d) adequately estimates the integrated volatility σ(d), the RV-standardized returns
should be normally distributed with a variance of unity. Table 1 shows that this is exactly
the case for our realized volatility estimator.

3.2 Stylized facts

Our results for the empirical study of USD/CHF are in line with those already found for
other rates. Summarizing the main characteristics of the exchange rate data are:
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Mean Std. Dev Kurtosis Jarque-Bera Probability

Raw returns 0.0005 0.1425 4.7262 382.89 0.0000

RV-std. returns 0.018 1.0191 2.9951 0.2464 0.8840

Table 1: Comparison of daily raw and RV-standardized return distributions

1. Fat tails: the kurtosis of the returns is much higher than that of a normal distribution
at intraday frequency and tends to decrease as the return length increases. Thus return
pdfs are leptokurtic with shapes depending on the time scale and presenting a very slow
convergence of the Central Limit Theorem to the normal distribution. For USD/CHF
the kurtosis of hourly returns is 15.58, for daily return is 4.72 and 3.78 at the weekly
horizons.

2. Long memory in the volatility: although the autocorrelation of the returns is insignif-
icant at all scales, the autocorrelation of the square and absolute returns shows very
strong persistence which lasts for long time interval. This persistence reflects on the
(hyperbolic) autocorrelation of realized volatilities where the long memory of the pro-
cess becomes even more evident. The autocorrelation of USD/CHF realized volatility
remain very significant for at least 6 months. This result holds true for realized volatil-
ities aggregated at all frequencies (hourly, daily, weekly and monthly).

3. Distributional properties of realized volatility: the unconditional distributions of real-
ized variances posses high level of skewness and kurtosis which decrease with temporal
aggregation but remain far from normal even at monthly scale. Realized volatility and
logarithmic realized volatility are instead much closer to normal distributions.

4. Scaling and multiscaling: scaling behavior is readily tested by computing the power
spectrum of the logarithmic price. For a scaling process power law behavior of the
spectrum is expected. Then an approximated straight line as that in figure (7) should
appear in the relative log-log plot. Moreover, empirical data clearly shows strong evi-
dences of multifractality (as we will later discuss).

4 The Model

4.1 Some desired properties of a volatility model

Standard GARCH and SV models are not able to reproduce the features described above.
Observed data contains noticeable fluctuations in the size of price changes at all time scales
while standard GARCH and SV short memory models appear like white noise once aggregated
over longer time periods. For instance, in the GARCH(1,1) models there is a stringent trade-
off between the possibility of having sharp changes in the short term volatility (high value of
the parameter α) and the ability to capture the long memory behavior of volatility (through
high values of β). Moreover, even with high value of β < 1 GARCH models are subject
to exponential decline in the autocorrelation, which is at odds with the observed hyperbolic
decline observed in the data. Hence the recent interest in long memory process.
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Long memory volatility is usually obtained by employing fractional difference operators
like in the FIGARCH models of returns or ARFIMA models on realized volatility. Frac-
tional integration achieves long memory in a parsimonious way by imposing a set of infinite-
dimensional restrictions on the infinite variable lags. Those restrictions are transmitted by
the fractional difference operators. However fractionally integrated models also pose some
problems. Fractional integration is a convenient mathematical trick but completely lacks a
clear economic interpretation. The use of the fractional difference operator (1 − L)d may
destroy some useful information on the process and may happen to be not flexible enough
to capture the real structure of the data (especially if this structure is dynamically changing
in time). Fractionally integrated models are often non trivial to estimate and not easily ex-
tendible to multivariate processes. These shortcomings are evident in the FIGARCH case.
But also for ARFIMA models it has been shown that the heuristic method of estimating
d separately (via a Geweke, Porter-Hudak method, for instance), gives notably biased and
inefficient estimates especially in the presence of large AR or MA roots (which seems to be
our case). Joint ML estimation of all the parameters in ARFIMA(p,d,q) models, would then
be necessary, making the estimation procedure more complex and even more difficult to ex-
tend to the multivariate case. Moreover the application of the fractional difference operator
requires a very long build up period which results in a loss of many observations. Finally
these kind of models are able to reproduce only the unifractal (or monofractal) type of scaling
but not the empirical multifractal behavior found in many recent works.

Formally a random process X(t) is said to be fractal or self-similar if it satisfies the
following scaling rule:

E[ | X(t) | q] = c t ζ(q) (5)

where c is a constant, q > 0 is the order of the moment and ζ(q) the scaling function or
structure function exponent which is linked to the Hölder exponent6 simply by H(q) = ζ(q)

q .
For unifractal processes ζ(q) is linear and then fully determined by its unique parameter
H(q) = H, hence the terminology unifractal or monofractal. Multifractal processes, on
the contrary are characterized by continuously changing H(q) and this leads to a nonlinear
(concave) ζ(q) function.

In practice the scaling function ζ(q) is estimated by studying the scaling behavior of
the moments of returns computed at different scale, the so called empirical structure (or
partition) function S(∆t, q). If the empirical financial process is scaling, then:

S(∆t, q) =
int[T/∆t]∑

t=1

| p(t + ∆t)− p(t) | q ∼ ∆tζ(q) (6)

Estimation of ζ(q) is then obtained by regressing S(∆t, q) on ∆t in log-log plots for different
values of q.

Structure function analysis can then be seen as a study of ”generalized” average volatilities
(since only moments of order 1 and 2 are usually employed to define volatility) computed
at different scales ∆t. For this reason structure function has been already implicitly studied
in the financial literature without explicitly referring to the structure function and scaling
formalism. In fact, variability of the scaling exponent H for various powers of the returns
has been already found to be a pervasive feature of financial data: Ding, Granger and Engle
(1993), Lux (1996), Mills (1996), Andersen and Bollerslev (1997), Lobato and Savin (1998).

6A generalization of the Hurst exponent.
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Although the above authors did not refer to the concepts of multifractality in their papers,
their findings identify the existence of multifractal processes in financial data. Their basic
message is, therefore, the same as that of recent contributions from physicists (Schmitt,
Schertzer and Lovejoy 1999, Vandewalle and Ausloos 1998b, Vandewalle and Ausloos 1998a,
Pasquini and Serva 2000).

Formally, any additive process can be shown to have only linear ζ(q) or constant H(q)7.
Hence, theoretically, only multiplicative processes can lead to multifractal behavior. It is
in fact often stated, mainly by physicists, that only random multiplicative cascade models,
as those encountered in turbulent flows analysis and fragmentation processes, are able to
reproduce the long memory and multifractal properties found in the empirical financial data.
Does this mean that we should refrain to continue to employ additive models and resign
ourself to use multiplicative cascade processes which will be extremely difficult to identify
and estimate?

The crucial point is that the long memory and multiscaling features observed in the data
could also be only an apparent behavior generated from a process which is not really long
memory or multiscaling. In fact, if the aggregation level is not large enough compared to the
lowest frequency component of the model, truly asymptotic short memory and monoscaling
models can be mistaken for long memory and multiscaling ones. In other words, the usual
tests employed on the empirical data can indicate the presence of long memory and multi-
scaling even when none exists, just because the largest aggregation level that we are able
to consider is actually not large enough. This means that the set of stochastic processes
able to generate the stylized facts found in the data is much larger than commonly thought.
In particular LeBaron (2001) shows that a very simple additive model defined as the sum
of only three different linear processes (AR(1) processes) each operating on a different time
frame can display hyperbolic decaying memory and multiscaling, provided that the longest
component has a half life that is long relative to the tested aggregation ranges. The appear-
ance of long memory as a combination of short memory processes is not surprising given the
result of Granger (1980) which shows that the sum of an infinite number of short memory
processes can give rise to long memory. However, what is surprising is that those results can
be obtained with only three different time scales.

As a result, it would be empirically impossible to statistically discern between true mul-
tiplicative processes and simple additive models with more than one (but far from infinite)
time scales. Since it would be desirable to have a volatility model which, in addition to
replicate the main stylized facts, is also simple to estimate and which possibly possesses a
clear economic justification and interpretation, it seems reasonable to go in the direction of
simple additive volatility models with a small number of components rather than in that of
complicated multiplicative systems.

4.2 The basic idea

In the light of the above considerations, we will propose a multi-component volatility model
with an additive hierarchical structure which will lead to a very simple additive time series
model of the realized volatility.

The basic idea stems from the so called ”Heterogeneous Market Hypothesis” presented by
Müller et al. 1993 , which recognizes the presence of heterogeneity in the traders. This view

7For Brownian motion for instance we have ζ(q) = q
2

which implies H(q) = 1
2
. More generally for fractional

Brownian motion with an order of fractional integration of d, ζ(q) = q(d − 1
2
) = qH. It has been shown

numerically that ARCH-GARCH process quickly converge to giving ζ(q) = q
2
. Even in the case of more exotic

Lévy flight (additive process with Lévy noise) and truncated Lévy flight the behavior of ζ(q) is still linear.
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of financial markets can be easily related with the ”Fractal Market Hypothesis” of Peters
(1994) and the ”Interacting Agent View” of Lux and Marchesi (1999). The idea of a presence
of multiple components in the volatility process has been also suggested by Andersen and
Bollerslev (1997) in their ”mixture of distribution” hypothesis. Yet in this latter view the
multi-component structure stems from the heterogeneous nature of the information arrivals
rather than from the heterogeneity of the agents.

The Heterogeneous Market Hypothesis tries to explain the empirical observation of a
strong positive correlation between volatility and market presence. In fact, in a homogeneous
market framework where all the participants are identical, the more agents are presents, the
faster the price should converge to its real market value on which all agents agreed. Thus, the
volatility should be negatively correlated with market presence and activity. On the contrary
in an heterogeneous market, different actors are likely to settle for different prices and decide
to execute their transactions in different market situations, hence they create volatility.

The heterogeneity of the agents may arise from various reasons: differences in the en-
dowment, degree of information, prior belief, institutional constraints, temporal horizons,
geographical location, risk profile and so on. Here we concentrate on the heterogeneity which
originates from the difference in the time horizon. Typically a financial market is composed
by participants having a large spectrum of dealing frequency. On one side of the dealing
spectrum we have dealers, market makers and intraday speculator, with very high intraday
frequency, on the other side there are central banks, commercial organization and, for exam-
ple, pension fund investors with their currency hedging. Each such participant has different
reaction times to news, related to his time horizon and characteristic dealing frequency. The
basic idea is that agents with different time horizons perceive, react and cause different types
of volatility components. Simplifying a bit, we can identify three primary volatility com-
ponents: the short-term with daily or higher dealing frequency, the medium-term typically
made of portfolio manager who rebalance their positions weekly, and the long-term with a
characteristic time of one or more months.

Although this categorization finds its justification in the simple observation of financial
markets and has a clear and appealing economic interpretation, it has been mainly over-
looked in financial modelling. A noteworthy exception is the HARCH model of Müller et
al. (1997) and Dacorogna et al. (1998). The HARCH process belongs to the wide ARCH
family but differs from all other ARCH-type processes in the unique property of considering
squared returns aggregated over different intervals. The equation of the latent variance is
then a linear combination of the squared returns aggregated over different time horizons.
The heterogeneous set of return interval sizes leads to the name HARCH for ”Heterogeneous
interval ARCH” (but the first ”H” may also stand for ”Heterogeneous market”). Because of
the long memory of volatility, the HARCH process in its initial formulation requires a large
number of returns measured at different frequency, making the log-likelihood optimization
very difficult and computationally demanding. To overcome these problems Dacorogna et
al. (1998) propose a new formulation of the HARCH process in terms of exponential moving
averages (EMA): the EMA-HARCH process. The idea is to keep in the variance equation
only a handful of representative interval sizes instead of having all of them, and replace
the influence of the neighboring interval sizes by an exponential moving average of the few
representative returns. This introduces a sort of GARCH-type elements in the HARCH pro-
cess. In fact, broadly speaking, the variance equation of the EMA-HARCH process can be
seen as a combination of several IGARCH processes defined over square returns aggregated
at different frequencies. Each IGARCH component can be regarded as the contribution of
the corresponding market component to the the total market volatility and is hence termed
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partial volatility .
Studying the interrelations of volatility measured over different time horizons, permits

to reveal the dynamics of the different market components. It has been recently observed
that volatility over longer time intervals has stronger influence on those over shorter time
intervals than conversely. This asymmetric behavior of the volatility has been found with
different statistical tools. Müller et al. (1997) employ a lead lag correlation analysis of ”fine”
and ”coarse” volatility to investigate causal relation in the sense of Granger, while Arneodo,
Muzy and Sornette (1998) perform a wavelets analysis. More recently Zumbach and Lynch
(2001) clearly visualize the asymmetric propagation of volatility by plotting the level of the
correlation between the volatility first difference and the realized volatility for a grid of many
different frequencies. These correlations measure the response function (in terms of induced
volatility) of a given market component to changes of volatilities at various time scales.

The overall pattern that emerges is a volatility cascade from low frequencies to high
frequencies. This can be economically explained by noticing that for short-term traders the
level of long term volatility matters because it determines the expected future size of trends
and risk. Then, on the one hand, short term traders react to changes in long term volatility
by revising their trading behavior and so causing short term volatility. On the other hand
the level of short-term volatility does not affect the trading strategies of long-term traders.
This hierarchical structure has induced some authors to propose formal analogy between FX
dynamics and the motion of turbulent fluid where a energy cascade from large to small spatial
scales is present. Then borrowing from the Kolmogorov model of hydrodynamic turbulence,
multiplicative cascade processes for volatility have been proposed (Ghashaghaie et al. 1999,
Muzy et al. 2000 and Breymann et al. 2000 ). Although these types of models are able in
theory to reproduce the main features of the financial data, their empirical estimation still
remains an open question. Moreover Kolmogorov model refers to the so called homogeneous
cascade where the energy is homogeneously dissipated over an infinite number of scales; while
in financial markets, only a limited number of scales (corresponding to the predominant
components of the market) are the carriers of the financial turbulence (Lynch 2000).

Motivated by previous consideration on the ability of simple additive stochastic models
to replicate equally well in practice the empirical behavior of the data, and from the obser-
vation that heterogeneous market structure generate an heterogeneous cascade with only few
relevant time scales, we propose a stochastic additive cascade model of the volatility with
three components.

4.3 The HAR-RV model

Defining the partial volatility σ̃
(·)
t as the volatility generated by a certain market component,

the proposed model can be described as an additive cascade of partial volatilities, each of
them having a “sort of AR(1) structure”8. We assume a hierarchical process where at each
level of the cascade the future partial volatility depends on the past volatility experienced
at that time scale (the ”AR(1)” component) and on the partial volatility at the next higher
level of the cascade i.e. the next longer horizons volatility (the hierarchical component). To
simplify, we consider a hierarchical model with only 3 volatility components corresponding
to time horizons of one day (1d), one week (1w) and one month (1m) denoted respectively
σ̃

(d)
t , σ̃

(w)
t and σ̃

(m)
t .

8Since on the right hand side there won’t be the lagged latent volatility itself but the corresponding realized
volatility, strictly speaking the process is not a true AR(1), but the fact that the realized volatility is a close
proxy for the latent one, makes this process similar to an AR(1).
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We assume that the market dynamics is completely determined by the behavior of the
dealers. Hence the high frequency return process is determined by the highest frequency
volatility component in the cascade (the daily one in this simplified case) with σ̃

(d)
t = σ

(d)
t

the daily integrated volatility. Then the return process is

rt = σ
(d)
t εt (7)

with εt ∼ NID(0, 1)
The model for the unobserved partial volatility processes σ̃

(·)
t at each level of the cascade

(or time scale), is assumed to be a function of the past realized volatility experienced at
the same time scale and, due to the asymmetric propagation of volatility, of the expectation
of the next period values of the longer term partial volatilities. For the longest time scale
(monthly) only the ”AR(1)” structure remains. Then the model reads:

σ̃
(m)
t+1m = c(m) + φ(m)RV

(m)
t + ω̃

(m)
t+1m (8)

σ̃
(w)
t+1w = c(w) + φ(w)RV

(w)
t + γ(w)Et[σ̃

(m)
t+1m] + ω̃

(w)
t+1w (9)

σ̃
(d)
t+1d = c(d) + φ(d)RV

(d)
t + γ(d)Et[σ̃

(w)
t+1w] + ω̃

(d)
t+1d (10)

Where RV
(d)
t , RV

(w)
t , and RV

(m)
t are respectively the daily, weekly and monthly (ex post) ob-

served Realized Volatilities as previously described, while the volatility innovations ω̃
(m)
t+1m, ω̃

(w)
t+1w

and ω̃
(d)
t+1d are contemporaneously and serially independent zero mean nuisance variates with

appropriately truncated left tail to guarantee the positivity of partial volatilities9.
The economic interpretation is that to each volatility component in the cascade corre-

sponds a market component which forms expectation for the next period volatility based on
the observation of the current realized volatility and on the expectation for the longer horizon
volatility (which is known to affect the future level of their relevant volatility).

By straightforward recursive substitutions of the partial volatilities, such cascade model
can be simply written as

σ
(d)
t+1d = c + β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ω̃

(d)
t+1d (11)

Equation (11) can be seen as a three factor stochastic volatility model, where the factors
are directly the past realized volatilities viewed at different frequency. From this process for
the latent volatility it is easy to derive the functional form for a time series model in terms
of realized volatilities by simply noticing that, ex-post, σ

(d)
t+1d can be written as

σ
(d)
t+1d = RV

(d)
t+1d + ω

(d)
t+1d (12)

where ω
(d)
t represent latent daily volatility measurement as well as estimation errors. Equa-

tion (12) makes clear that we are not treating realized volatility as an error-free measure of
latent volatility. Here the importance of a proper treatment of microstructure effect in the
computation of the realized volatility measures (as discussed in section 2.2) becomes appar-
ent. The consistency of the realized volatility (which is directly valid for a broad class of
processes) is not enough to state that ω

(d)
t is a mean zero error term. Unbiased estimators

9An alternative way to ensure positiveness of the partial volatilities would be to write the model in terms
of the log of RV.
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of latent volatilities are needed. Equation (12) links our ex post volatility estimate RV
(d)
t+1d

to the contemporaneous measure of daily latent volatility σ
(d)
t+1d. Substituting equation (12)

in equation (11) and recalling that measurement errors on the dependent variable can be
absorbed into the disturbance term of the regression, we obtain a very simple time series
representation of the proposed cascade model:

RV
(d)
t+1d = c + β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ωt+1d (13)

with ωt+1d = ω̃
(d)
t+1d − ω

(d)
t+1d.

Equation (13) has a simple autoregressive structure in the realized volatility. In general,
denoting l and h respectively the lowest and highest frequency in the cascade, eq.(13) is an
AR( l

h) model reparametrized in a parsimonious way by imposing economically meaningful
restrictions. In other words eq.(13) is an AR-type process but with the feature of considering
volatilities realized over different interval sizes; it could than be labeled as an Heterogeneous
Autoregressive model for the Realized Volatility (HAR-RV).

5 Simulation results

In spite of its simplicity the proposed model is able to produce rich dynamics for the returns
and the volatility which closely resemble the empirical ones. This dynamic is generated by
the heterogeneous reaction of the different market components to a given price change which
in turns affect the future size of price changes. This causes a complex process by which the
market reacts to its own price history with different reaction times. Thus market volatilities
feed on themselves10.

To asses the ability of the model to replicate the main stylized facts of the empirical data,
we compare the time series returns and volatilities produced by the simulation with those of
twelve years of USD/CHF. In order to give the model the time to unfold its dynamics at daily
level, the HAR-RV(3) process is simulated at the frequency of 2 hours (2h). The simulated
model then reads:

r
(2h)
t = σ

(d)
t εt (14)

σ
(d)
t+2h = c + β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ω

(d)
t+2h (15)

The parameters of the model (β(·)) are just hand made calibrated to obtain realistic results.
The analysis begins with a simple visual inspection of the two time series for the returns

(figure 1) and the realized volatilities (figure 2). In both figure 1 and 2, the upper panels
show the empirical data for USD/CHF from December ’89 to July ’01, while the lower panels
display a sample realization of the simulated process for a similar period. From the visual
inspection alone is difficult to discern much difference.

Figure (3) summarizes the character of the simulated and actual return distribution for 1,
5, and 20 day interval. In these and the subsequent comparison figures, the number of obser-
vations for the real and simulated data is very different. The twelve years of USD/CHF gives
3001 daily observations, while the HAR-RV(3) process is simulated (at 2 hours frequency)
for a period corresponding to approximately 600 years i.e. 150,000 daily observations.

Table 2 reports the values of the kurtosis of those distributions for the three aggregation
interval. This table clearly shows how the simple HAR model for the realized volatility is

10This mechanism is sometimes called ”price-driven volatility” in contrast to the ”event-driven volatility”
consistent with the EMH and the ”error-driven volatility” due to over and under reaction of the market to
incoming informations.
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Figure 1: Comparison of actual (top) and simulated (bottom) daily returns series
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Figure 2: Comparison of actual (top) and simulated (bottom) daily RV series
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Figure 3: Comparison of actual (dotted) and simulated (solid) PDF of returns for different time horizons.
Respectively from left to right: daily, weekly and monthly.

Kurtosis daily returns weekly returns monthly returns

USD/CHF 4.72 3.78 3.04

HAR-RV(3) 4.89 3.90 3.50

Table 2: Comparison of actual and simulated kurtosis of returns for different time horizons

able to reproduce not only the excess of kurtosis of the daily returns, but also the empirical
cross-over from fat tail to thin tail distributions as the aggregation interval increases.

But what we are mainly interested in, is the ability of the model to reproduce the volatil-
ity persistence of empirical data. Figure (4) shows the actual autocorrelation function of
USD/CHF daily realized volatility together with the autocorrelation of HAR daily realized
volatility simulated over a period corresponding to 600 years. This figure shows that the
purpose of reproducing the long memory of empirical volatility seems to be very well ful-
filled. It is important to remark that theoretically the HAR model for volatility is a short
memory process which asymptotically should not exhibit hyperbolic decay of the autocorrela-
tion. However, for the aggregation interval considered, the simulated model shows a volatility
memory which is at least as long as that of actual data (actually it could be even much longer
for different choices of the parameters). Also the partial autocorrelation functions show quite
good agreement.

In figure (6) we also compare the distribution of the daily realized volatility, finding
reasonable agreement between the real data and the simulated one.

Finally we investigate the scaling behavior of the real and simulated data. In figure (7)
the periodogram of the daily returns for the two series is plotted in a log-log plane. Again
real data cover a period of twelve years while the simulation is performed for a virtual period
of more than 600 years. Both series display high degree of linearity as the one expected for
true self-similar process.
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Figure 4: Comparison of actual (dotted) and simulated (solid) autocorrelation of daily realized volatility
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Figure 6: Comparison of actual (dotted) and simulated (solid) distribution of daily realized volatility
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6 Estimation and Forecast

Following the recent literature on the realized volatility, we can consider all the terms in (13)
as observed and then easily estimate its parameters β(·) by applying simple linear regres-
sion. Standard OLS regression are consistent and normally distributed, but when multi-step
ahead forecast are considered, the presence of regressors which overlap, makes the usual in-
ference no longer appropriate. We then employ the Newey-West covariance correction with
a conservative number of lags equal to 20.

Since the uses of intraday measures of realized volatility poses problems either of measure-
ment accuracy and strong intraday seasonalities, we choose to estimate the variance equation
(13) at daily frequency11. Table 3 reports the results of the estimation of the HAR-RV model
for twelve years of USD/CHF daily realized volatilities.

It is worth noticing that if we are ready to believe that realized volatilities aggregated over
different horizons are reasonable proxies for volatilities generated by the corresponding market
components, an interesting byproduct of this simple OLS regression is a direct estimate of
the market components weights, that is, a readily evaluation of the contribution of each
market component to the overall market activity. Moreover, if a moving window regression
is performed, a time series evolution of such weights is easily attained as well.

As we have already seen, the HAR-RV process is an autoregressive model reparametrized
in a parsimonious way by imposing economically meaningful restrictions. We can then evalu-
ate if those restrictions are valid by comparing the restricted HAR model with the unrestricted
AR one. Since the HAR model considered here employs monthly realized volatility (which
corresponds to 20 working days) the corresponding unrestricted autoregressive model is an
AR(20). A multiple hypothesis test based on the difference between restricted and unre-
stricted residual sums of squares is then computed. The result of this F-test is 2.48 which is
significant. Looking at the information criteria, instead, gives less clear results: on the basis
of the AIC, the unrestricted AR(20) model would be slightly preferred, while on the basis of
the SIC (which imposes larger penalty for additional coefficients) the HAR-RV is preferred.

The in-sample 1 day ahead forecasts of the model are shown in table 4 and 5. These
forecasts are obtained by first estimating the parameters of the models on the full sample
and then performing a series of static one-step ahead forecasts. For comparison purposes
other models are added: the standard GARCH(1,1) and J.P.Morgan’s RiskMetrics, together
with an AR(1) and AR(3) model of the realized volatility. Moreover a fractionally integrated
model for the realized volatility as employed by Andersen et al. 2002 is considered. They
propose a fractional differentiation of the realized volatility series with a fractional coefficient
estimated on the full sample with the GPH algorithm (which gives d = 0.401) followed by an
AR(5) fit. Hence the model is an ARFIMA(5,0.401,0) estimated with a two steps procedure.

In table 4 the forecasting performance are evaluated on the basis of Root Mean Square
Errors (RMSE), Mean Absolut Error (MAE), Mean Absolute Percentege Error and Theil’s
Inequality coefficient. Following the analysis of Andersen and Bollerslev (1998) table 5 reports
the results of the Mincer-Zarnowitz regressions of the realized volatility on a constant and
the various model forecasts based on time t− 1 information. That is

RV
(d)
t = b0 + b1Et−1

[
(RV

(d)
t )

]
+ error (16)

11A point of caution should be considered here. As for the GARCH, the β(·) parameters of the variance
equation (13) have a time frequency dimension; i.e. they are defined for a certain time frequency which is the
frequency at which the model is estimated. The parameters will then have different values consistent with
the time frequency employed and, in general, for the HAR-RV model time aggregation will tend to reduce the
impact of shorter realized volatilities and increases that of longer horizons.
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Figure 8: Comparison of actual (dotted) and in sample prediction (solid) of the HAR model for daily
realized volatilities of USD/CHF exchange data from December ’89 to July 2001.

HAR-RV(3) MODEL
Included observations: 3000 after adjusting endpoints
Newey-West Standard Errors and Covariance (lag=20)

Variable Coefficient Std. Error t - Statistic Probability

C 0.017845 0.002824 6.319572 0.00000
RVD(-1) 0.369542 0.028449 12.98979 0.00000
RVW(-1) 0.265822 0.041865 6.349472 0.00000
RVM(-1) 0.215011 0.037637 5.712704 0.00000

R-squared 0.45592 Mean dependent var 0.12764
Adjusted R-squared 0.45538 S.D. dependent var 0.04081
S.E. of regression 0.03012 Akaike info criter -4.16567
Sum squared resid 2.71869 Schwarz criterion -4.15766

Table 3: Estimation results of the least squares regression of HAR-RV(3) model for the USD/CHF
exchange data from December ’89 to July 2001.
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In both tables the difference in forecasting performance between the standard models and
the ones based on realized volatility is evident.

But what we are mainly interested in, is to compare the models on the basis of truly
out of sample forecasts. Table 6 and 7 reports the results for out of sample forecast of
the realized volatility in which the models are daily reestimated on a moving window of
1000 observations12. An exception is made for the ARFIMA model for which the fractional
difference operator requires a long build up period equal to the cut off of its Taylor expansion.
We choose the standard cut off limits of 1000 which for a value of d of 0.401 induces a cut off
error of 4.2%. After fractional differentiation, the optimal length of the moving window used
in the estimation of the AR parameters turns out to be of about 250 days. The forecasting
performance are compared over three different time horizons: 1 day, 1 week and 2 weeks.
The multi-step ahead forecasts are evaluated considering the aggregated volatility realized
and predicted over the multi-period horizon. For a h steps ahead forecast the target function
is then

∑h
j=0 RV

(d)
t+j and the Mincer-Zarnowitz regression becomes:

h∑

j=0

RV
(d)
t+j = b0 + b1Et−h




h∑

j=0

RV
(d)
t+j


 + error (17)

It turns out that, out of sample, the parsimonious HAR(3) model steadily outperforms
the others at all the three time horizons considered (1 day, 1 week and 2 weeks). Moreover
the HAR(3) model is the only one always presenting the values of 0 and 1 falling in the
confidence interval of respectively b0 and b1 (the sufficient condition for unbiased forecasts).

It is noteworthy noticing that though the superior performance of the ARFIMA and
HAR(3) were already apparent at daily horizon, it becomes striking at weekly and biweekly
horizons. The reason is that the other models have a memory which is too short compared
to the forecasting horizon (AR(1) and AR(3)) or they adjust too late to the movements of
the realized volatility (RiskMetrics). This explanation is confirmed by figure 10 and 11 which
compare the dynamic behavior of the forecasts of the different models for one week and
two weeks periods ahead. For these time horizons the importance of long memory becomes
manifest. What is surprising is the ability of the HAR-RV model to attain these results with
only few parameters.

7 Conclusions

The additive volatility cascade inspired by the Heterogeneous Market Hypothesis leads to a
simple AR-type model in the realized volatility which has the feature of considering volatilities
realized over different interval sizes. We term this model, Heterogeneous Autoregressive
model of the Realized Volatility (HAR-RV). The new HAR-RV model seems to successfully
achieve the purpose of modelling the long memory behavior of volatility in a very simple
and parsimonious way. In spite of the simplicity of its structure and estimation, the HAR-
RV model shows remarkably good out of sample forecasting performance. These promising
results together with its simple autoregressive structure suggest that a natural way to extend
the model to the multivariate case would be to develop a Vector-HAR analogously to the
standard VAR model.

12Hence these results refer only to the last 2000 observations of the sample and are, therefore, not directly
comparable with those in table 4 and 5.
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IN SAMPLE PERFORMANCE

GARCH RM AR(1) AR(3) ARFIMA HAR(3)

RMSE x 100 3.6579 3.6789 3.1600 3.0706 3.0787 3.0041
MAE x 100 2.8299 2.7742 2.1978 2.1214 2.0593 2.0577
MAPE % 25.24% 23.54% 17.87% 17.11% 15.80% 16.57%
Theil Inequality 13.238 13.293 11.958 11.610 11.882 11.355
coefficient.x100

Table 4: Comparison of the in-sample performances of the 1 day ahead forecast of GARCH, RiskMetrics,
AR(1), AR(3), ARFIMA(5,0.401,0) and HAR(3) RV models for 12 years of USD/CHF.

IN SAMPLE MINCER-ZARNOWITZ REGRESSION

b0 b1 R2

GARCH -0.027631 1.101517 0.3055
(-0.0361, -0.0192) (1.0420, 1.1610)

RM 0.032200 0.688880 0.3254
(0.0271, 0.0373) (0.6534, 0.7244)

AR(1) -0.000339 1.002469 0.4007
(-0.0061, 0.0054) (0.9586, 1.0464)

AR(3) -0.000553 1.004037 0.4341
(-0.0059, 0.0048) (0.9630, 1.0451)

ARFIMA 0.005210 1.002926 0.4496
(0.0002, 0.0102) (0.9632, 1.0427)

HAR(3) -0.000861 1.006168 0.4589
(-0.0060, 0.0043) (0.9669, 1.0454)

Table 5: In-sample Mincer-Zarnowitz regression for the GARCH, RiskMetrics, AR(1), AR(3),
ARFIMA(5,0.401,0) and HAR(3) model for the 1 day ahead realized volatility of USD/CHF (95% confi-
dence interval in parentesis).

19



1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
OUT OF SAMPLE FORECAST HAR(3)

actual
HAR(3)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
RESIDUALS

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

0.1

0.2

0.3

0.4

0.5

const
day
week
month

Figure 9: Top: comparison of actual (dotted) and out of sample prediction (solid) of the HAR(3) model
for daily realized volatilities. Middle: residuals. Bottom: time evolution of the regression coeffiecients
which according to the model represent market component weights.
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OUT OF SAMPLE PERFORMANCE

RM AR(1) AR(3) ARFIMA HAR(3)

1 RMSE x 100 3.5945 2.9404 2.9088 2.8916 2.8472
D MAE x 100 2.6786 2.0520 2.0061 1.9842 1.9477
A MAPE % 24.01% 17.55% 16.91% 16.90% 16.27%
Y Theil Inequality 13.901 11.741 11.619 11.682 11.384

coefficient.x100

1 RMSE x 100 3.0065 2.7788 2.4372 2.7864 2.2939
W MAE x 100 2.3426 2.1324 1.8089 2.0589 1.6403
E MAPE % 22.08% 19.19% 16.074% 18.05% 14.15%
E Theil Inequality 11.601 11.124 9.774 11.258 9.205
K coefficient.x100
2
W RMSE x 100 2.9734 2.8111 2.4660 2.3743 2.1713
E MAE x 100 2.4254 2.3004 1.9254 1.7728 1.6339
E MAPE % 23.28% 21.46% 17.91% 15.76% 14.47%
K Theil Inequality 11.421 11.212 9.880 9.593 8.722
S coefficient.x100

Table 6: Comparison of the out of sample performances of the RiskMetrics, AR(1), AR(3),
ARFIMA(5,0.401,0) and HAR(3) RV model of 12 years of USD/CHF for 1 day, 1 week and 2 weeks
ahead aggregated realized volatility of USD/CHF.

21



OUT OF SAMPLE MINCER-ZARNOWITZ REGRESSION

b0 b1 R2

RM 0.044168 0.580141 0.2552
1 (0.0384, 0.0500) (0.5367, 0.6236)

AR(1) 0.002169 0.977008 0.3764
D (-0.0051, 0.0095) (0.9179, 1.0361)
A AR(3) 0.004260 0.961717 0.3896
Y (-0.0027, 0.0113) ( 0.9052, 1.0182)

ARFIMA 0.010049 0.916610 0.3982
(0.0035, 0.0166) (0.8637, 0.9695)

HAR(3) 0.002030 0.982624 0.4150
(-0.0047, 0.0088) (0.9278, 1.0374)

RM 0.048970 0.536633 0.1333
1 (0.0410, 0.0570) (0.4705, 0.5929)

AR(1) -0.021963 1.164388 0.0801
W (-0.0448, 0.0009) (0.9786, 1.3502)
E AR(3) -0.055300 1.444399 0.3196
E (-0.0675, -0.0431) (1.3452, 1.5436)
K ARFIMA 0.007047 0.938308 0.3569

(-0.0002, 0.0143) (0.8790, 0.9976)
HAR(3) 0.000191 0.997471 0.3692

(-0.0073, 0.0077) (0.9361, 1.0588)

2 RM 0.072274 0.370246 0.0371
(0.0614, 0.0831) (0.2901, 0.4504)

W AR(1) 0.148271 -0.229492 0.0063
E (0.1323, 0.1642) (-0.3562, -0.1028)
E AR(3) -0.027788 1.214038 0.1142
K (-0.0474, -0.0082) (1.0544, 1.3737)
S ARFIMA 0.006737 0.939015 0.2969

(-0.0016, 0.0151) (0.8708, 1.0072)
HAR(3) 0.002461 0.978118 0.3079

(-0.0060 0.0109) ( 0.9089 1.0474)

Table 7: Out of sample Mincer-Zarnowitz regression for the RiskMetrics, AR(1), AR(3),
ARFIMA(5,0.401,0) and HAR(3) model for the 1 day, 1 week and 2 weeks ahead aggregated realized
volatility of USD/CHF (95% confidence interval in parentesis).
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Figure 10: Comparison of out of sample 1 week aggregated volatility predictions for respectivly from top
to bottom, GARCH, RiskMetrics, AR(3) and HAR(3) model. The continuos line is the prediction while
the dotted line is the ex-post realized volatility over a 1 week period.
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Figure 11: Comparison of out of sample 2 week aggregated volatility predictions for, respectivly from top
to bottom, GARCH, RiskMetrics, AR(3) and HAR(3) model. The continuos line is the prediction while
the dotted line is the ex-post realized volatility over a 2 weeks period.
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