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Introduction 

Our motivation for this paper is not to create the “best” volatility estimator.  

There are already several very good intraday measures in existence.  Our 

method sets out to provide the 24-hour volatility that would best correspond to 

the experience of a delta hedger who follows up his or her position throughout 

the day.  Of course, we should be able to get very close to this value if we use 

tick data.  However, in order to provide a method that could furnish a very long 

data record and could be used on virtually any underlying market, we need only 

readily available data such as open, high, low, and close.  Tick data are simply 

not available for a host of markets and certainly not going back to the start of 

trading. 

The open value is key to the first possible follow-up (overnight); then the high 

and low give us the best possible idea of the market range for trading hours.  

Different formulas add other terms, but, while improving accuracy on the “true” 

value of realized volatility, they do not improve the accuracy of the estimate of 

volatility that an intraday hedger may experience.  Our strategy, therefore, is to 

sacrifice some accuracy for a value that is more representative of an intraday 

follow-up hedge. 

In addition, we wanted the same built-in assumptions as interday formulas. 

These can vary from circumstance to circumstance but the assumptions that 

interest us include a zero mean for the returns process, and a 252-day 

annualisation period, which is the standard method for volatility and variance 

swaps in the over-the-counter (OTC) marketplace. It is the same approach that 

will soon launch for exchange-listed tradable instruments on realized volatility. 

Therefore, we want the intraday formula to correspond to all those 

assumptions/constraints so that if one looks at interday to intraday values, they 

will be comparable. 

We list six assumptions below linking both measurements. 

1.     They should assume no drift. 

2.     They have a 252-day annualisation factor. 

3.     They use a simple set of daily price information (Open, High, Low, and 

Close). 

4.     They are measured over a full 24-hour day. 

5.     There is no need for tick data. 
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6.     The estimators can be easily calculated and independently verified 

(whereas intraday volatility based on tick data would be difficult for others to 

verify). 

In addition, we treat two distinct portions of the day separately:  the period from 

the close of the market until the open (“overnight”) and the period when the 

market is open (“intraday”).  

Our approach is to estimate standard deviation, rather than variance, directly; 

this approach is not entirely new. Although virtually all the published literature 

is concerned with direct estimation of variance, one unpublished exception to 

this is Buescu et al. (2011), which partially draws upon Kone (1996). Our 

resulting estimator has some similarities to the Garman–Klass estimator but 

differs in a number of key aspects. It is first-moment based and it avoids cross-

terms by using non-overlapping information. This present approach is motivated 

by the work of Garmann and Klass who find that the cross-terms add very little 

to the efficiency of the estimator. We readily acknowledge that there may be 

more efficient versions of our estimator but they will come with added 

complexity. 

Another interesting feature of our approach is that it is implicitly weighted for a 

24-hour day without the need to weight the two terms with any coefficient, 

making it independent of a weighting method requiring time-of-day values (this 

adds to its simplicity and reduces the chance of error). 

There are a large number of intraday variance estimators already in existence in 

the literature, and we shall not attempt to review them in any detail, as good 

reviews are readily available. We do note the contributions of Parkinson (1980), 

Garman and Klass (1980), Rogers and Satchell (1991), and Rogers et al. (1994).  

More recent contributions include Sutrick et al. (1997), Yang and Zhang (2000), 

and Magdon-Ismail et al. (2000) and (2004). Examples of data applications are 

numerous; see, inter alia, Rogers et al. (1994) and Chan and Lien (2003). In 

Section 2 we present our estimator and discuss some of its properties relative to 

alternative procedures. In Section 3 we provide further analysis of our 

estimator, considering it as a method of moments estimator. Section 4 

concludes. 

Section 2 

Let (�� , �� , ��, ��) be the opening, high, low, and closing prices of some 

financial entity observed at day t. Of particular interest to us is the daily log 

range. �� = ln���) − ln ���) 
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We assume that the log-price process is a scaled Brownian motion without drift. 

This is known as a Samuelson Process, and it involves a diffusion process for 

prices P(s), whose equation of motion is given below.                                  ����) = ����)�� + ����)����)                                      (1) 

and W(s) is standard Brownian motion. Solving (1) to arrive at 

                                       P(s) = P(0)exp((� − �� ��)� + ����)), 

we see that ln(P(s)) is a mean-zero process if � = �� ��.  

We now consider the properties of the range for a mean-zero diffusion with 

constant variance. Parkinson (1980, pg. 62) provides formulae for the 

population moments of �� based on results of Feller (1951). These are, for a 

daily unit-time period, 

                                       E(���) = �√� Γ����� )�1 − ���) �! − 1)�2��)� �#  

where � is the daily standard deviation whilst  �$) is the Riemann Zeta 

function; see Abramovitz and Stegum (1964). The index p can be any real 

number greater than or equal to one. 

Of particular interest to us are the moments when p = 1 or 2. Here: 

                                        E(��) = 2�%�� and                     (2) 

                                        E(���) = �4 ln�2))�� 

We see that the use of the range allows us to estimate and analyse both the daily 

standard deviation and variance separately; we shall discuss here the estimation 

of the standard deviation. 

Direct Estimation of the Standard Deviation 

Given N data-points for estimation, we note that the properties of lognormal 

Brownian motion ensure that our daily log-returns are independent and 

identically distributed. Thus a natural unbiased estimator of  � will be 

                                                  �' = ∑ )*+*,-�.%/0 . 



 

4 

 

This can be construed as a method of moments estimator as we are equating the 

first sample and population moments. This estimator will have a variance that 

equals 

                                       123��') = �4/�. (ln(2) – ��) = 0.0089
4/.  

The natural comparison will be with the classical estimator based on daily 

close-to-close data; we use 5� = ln(��) − ln���6�). Given the assumption of 

zero-drift, 

�8 = 9∑ 5��.�:�;  

the estimator �8 is the appropriate estimator if we assume that the process has a 

mean of zero. Its distribution can be described as 
4√. times the square root of a 

Chi-squared with N degrees of freedom, where a Chi-squared random variable 

is denoted as ( <��;)). The square root of a Chi-squared is referred to as a Chi 

distribution. Its moments can be deduced from the moments of a Chi-squared 

since it is straightforward to compute fractional moments. Indeed, 

                                         E(�8) = 4=�+>-/ )√. √�=�+/) and E���)? =�� 

We can calculate an unbiased estimator as  

�@ = Γ�;2 )Γ�; + 12 ) 9∑ 5��.�:�2  

From this, we can see that the variance is that of 
=�+/)4√�=�+>-/ ) times the variance of a 

Chi-squared variable with N degrees of freedom. The final result is given by the 

following: 

                                   123��@) = 4/� � =A+/B=A+>-/ B)��; − 2�=A+>-/ B=A+/B )�) 

The relative efficiency, R(�8, �@), of the two estimators is given by 
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                                     R(�8, �@) = 0+� CD��)6 /0).
� EA+/ BEA+>-/ B)/�.6��EA+>-/ BEA+/ B )/) 

This rather messy expression can be evaluated directly for small N or by using 

Stirling’s formula for large N. This seems to work very badly in small samples. 

Another more natural competitor is to construct an estimator based on the 

absolute value|5�|. This has mean 

                              E(|5�|) = �%��  

As before we construct an unbiased estimator, 

                                      �G = %�� ∑ |5�|.�:� /N  

This will have a variance,         

                            123��G) = ��6�)4/�.  

and the relative efficiency, R(�8, �G), is given by 

                              R(�8, �G) = 
�� CD��)6 /0)�6�   = 0.1555. 

This gives us a six- to seven-fold increase in efficiency of our estimator relative 

to �G. 

Estimating the Standard Deviation (SD) When the Market Is Closed for 

Part of the Day 

In the above we are implicitly assuming that the market is open for 24 hours a 

day. In reality, virtually all markets will be closed some of the time. For such a 

market, consider the volatility contribution from the time the market closed last 

night (!3HIJ = ��6�) to the time it opens the next day (!3HIJ = ��). This can 

sensibly be measured by the quantity �ln � K*L*M-))�; here we do not even need to 

assume that the volatility per unit time when the market is closed is the same as 

the volatility per unit time when the market is open, which is really an 

assumption about the arrival of information.   
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With the addition of this second, overnight, contribution to the previously 

discussed intraday portion of our formula, our final estimator of annualised SD, 

DVOL, is given by 

                                 DVOL =
N�O� ∑ ACDA P*Q*M-BB/+*,- ��O��R∑ STUV*W* X+*,-/√/+ Y/

.     (3) 

This slightly simplifies to 

                                 DVOL =9�O�. ∑ Z[\ A K*L*M-B]� + �O��^ Z∑ AV*W* B+*,-. ]�.�:�     (4) 

Of course, when the market is closed, no data are available. The next best thing 

is to use the close of the night before and the open the next day (��6� and ��) to 

get an estimate of the overnight volatility and the first potential follow-up 

opportunity for a delta hedger.  Also our measure of annualised daily volatility 

will still be correct even if volatility is different in the two intraday periods. 

Whilst it might be argued that we should use a second moment estimator inside 

(4), or that we should rescale the second term by a different function of N, we 

prefer the above representation because in the important special case where the 

market never closes and the first term is zero, we recover our range-based 

estimator. Furthermore for the values of N envisaged, the difference in scaling 

is likely to be negligible. 

Finally, we stress the advantages of the above formula in being independent of 

the actual times the market is open and closed over the day. This is because the 

overnight range is directly affected by the time the market is closed and the 

intraday high/low range is directly affected by the time the market is open.  This 

eliminates the need to go back in time and collect exchange opening and closing 

times as these times may have changed. In other words, irrespective of the 

actual times concerned the two components naturally capture that component of 

volatility attributable to that sub-period and the two added together give us the 

daily volatility scaled up to an annualised measure by multiplying by 252. 

Finally, there is no need for any covariance terms as the two components do not 

overlap and, because of the properties of (1), the fact that they do not overlap 

implies that they are independent. 
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Section 3: Interpretation as a Method of Moments Estimator 

In this section, we elaborate further on the properties of our estimator as a 

method of moments estimator in the face of misspecification. The situation we 

shall consider is when the drift of the process is non-zero, since it may be 

argued that there are periods when the drift is non-zero even at a daily 

frequency. 

Buescu et al. (2011) provide a thorough analysis of method of moments 

estimation for the case of log Brownian motion with drift in which they provide 

an implicit estimation of daily standard deviation. They also correct a number of 

published and unpublished results in the intraday volatility literature. 

They also derive the expected value of the range with a drift parameter �, and a 

time (elapsed value) of t, and they show (see Theorem 2.1, page 6, op. cit.), for _��, the range of the non-zero mean process. 

`�_��) = �� + 4/a )�1 − 2Φ�6a√�4 )) + 2
4√�√�� exp �− �a/�4/), 

where Φ (x) is the distribution function of the standardised normal.  In the 

context of our problem, t = 1, corresponding to daily data, whilst � = 0. It may 

be thought that this estimator might be preferred but in fact it has no closed 

form expression based on data, as the authors discuss on page 14. Furthermore, 

it involves knowing explicitly what proportion of the day the market is open, a 

parameter we do not need to specify explicitly in our equation. 

For t = 1, we can expand the above expression in Taylor’s series about 0 for the Φ and exp functions. Upon simplification we arrive back at the formula in (2). 

The expansion is given below. 

`�_��) = �� + 4/a )� �a√��4/ − �af4f√��) + 2
4√�� A1 − a/�4/B + O(��)       (5) 

If we now subtract (2) from (5), we see that `�_��) − �E(��) = ����). 

This represents a very small amount for typical daily drifts that we might see in 

practise. For example, if 252 � = 10% per annum, a fairly high annual drift in 

the current environment, then � = 0.004 and �� = 256 $ 106�� approximately; 

it is clear that this should be very small in most realistic cases. 
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We now provide some empirical results. In Table 1 below, we present the 

maximum, average, and minimum values for 1-month, 3-month and 12-month 

volatilities based on interday (close to close) data for the SPDR® S&P 500® 

ETF on NYSE Arca® from 29 Jan 1993 (at start of trading) to 31 March 2015. 

These are denoted by the acronym VOL. We also present in Table 2, for the 

same data, equivalent intraday measures based on our estimator; these are 

denoted DVOL. The corresponding volatility of volatility measures are denoted 

by VOV and DVOV respectively. The symbol key can be found immediately 

below the two tables. We find clear evidence of a substantial reduction in the 

volatility of volatility as predicted by theory. Whilst the reductions are not 

exactly equal to efficiency gains derived earlier in the paper, they nevertheless 

provide convincing evidence that there are tangible benefits to adopting our 

estimator. We also observe that the range of our range-based estimator is 

smaller over 1, 3, and 12 months. 

  

Table 1 
 1VOL 3VOL 12VOL 1VOV 3VOV 12VOV 
Max 91.25% 73.86% 45.56% 317.93% 131.41% 54.61% 
Avg 16.29% 16.74% 17.57% 99.97% 35.83% 10.71% 
Min 5.14% 6.42% 8.52% 32.66% 5.33% 0.99% 

 

Table 2 
 1DVOL 3DVOL 12DVOL 1DVOV 3DVOV 12DVOV 
Max 89.87% 69.90% 41.28% 272.68% 80.81% 11.94% 
Avg 16.22% 16.38% 16.79% 53.61% 21.13% 6.48% 
Min 5.27% 6.40% 7.45% 19.21% 10.20% 3.24% 

 

Key 

1VOL 1-month/21-trading-day interday (close-to-close) 

realised volatility 

3VOL 3-month/63-trading-day interday realised volatility 

12VOL 12-month/252-trading-day interday realised 

volatility 

1VOV, 3VOV, and 

12VOV 

1-month interday realised volatility of 1-, 3-, and 

12-month interday realised volatility, respectively 

1DVOL, 3DVOL, and 

12DVOL 

1-, 3-, and 12-month overnight/intraday realised 

volatility, respectively 

1DVOV, 3DVOV, and 

12DVOV 

1-month interday realised volatility of 1-, 3-, and 

12-month overnight/intraday realised volatility, 

respectively 
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The vol of vol calculation is performed on the rolling 1VOL, 3VOL, 12VOL, 

1DVOL, 3DVOL, and 12DVOL time series using the standard interday formula 

outlined earlier.   

� = 9252 ∑ 5��.�:�;  

Since the underlying time series are realized volatility, the result of performing 

the interday realized volatility calculation is the vol of vol. It should be noted 

that even though the underlying time series uses 1, 3, and 12 months, the vol of 

vol calculation uses a 1-month (21-day) time frame for all six series. It should 

also be noted that we cannot use our new DVOL calculation on the VOL or 

DVOL series to get vol of vol because there is no open, high, and low data 

available for a VOL series or DVOL series. We therefore resort to using the 

standard interday formula on daily (i.e., closing) values. 

Graph 1 plots the difference in the two estimators whilst Graph 2 plots the two 

vols of vol. Both graphs were split into two five-year time periods in order to 

show more detail. It is immediately evident that the two estimators do not 

coincide and that, in virtually every time period, 1DVOV is noticeably smaller 

than 1VOV. This reduction in the vol of vol is the feature we hoped to find in 

our new estimator. A full empirical characterisation in terms of market 

conditions of when the intraday estimator “works better” is a topic for future 

study. 
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Graph 1 
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Graph 2 
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Conclusion 

In this paper, we have examined the properties of a simple estimator based on 

the overnight and high/low range and shown it to be easy to calculate and highly 

efficient compared to conventional estimators of the daily standard deviation of 

returns. We felt that it more closely resembles the results an intraday hedger 

would experience given the assumption that tick data is not readily available.  

Unlike other intraday estimators, DVOL utilizes the same assumptions as the 

interday volatility formula that is prevalent in the over-the-counter volatility and 

variance swaps marketplace, and the soon-to-be-launched instruments in the 

exchange-traded arena. 

We have also presented an adaptation of the estimator that allows the use of 

open and close price data when the market is closed for part of the day without 

the need to weight each term. Furthermore, our estimator seems robust to 

situations where the drift, which we have assumed to be zero, is in fact, non-

zero. We demonstrate this by considering an approximation based on a 

comparison of the zero mean drift estimator versus the more sophisticated but 

also much more complex estimator based on the expected value of the range 

when the drift is non-zero. 

Finally we provide evidence of risk reduction by looking at the volatility of 

volatility of our estimator and the conventional close to close estimator using 

data based on the SPDR® S&P 500® ETF on NYSE Arca® from 29 Jan 1993 (at 

start of trading) to 31 March 2015. The empirical results clearly support the 

theoretical calculations provided in the paper. 

 

SPDR®, and S&P 500® are registered trademarks of Standard & Poor’s Financial Services LLC. SPDR® 

S&P 500® ETF Trust is sponsored by PDR Services, LLC, and the trustee of the Trust is State Street 

Bank and Trust Company. NYSE Arca® is a registered trademark of NYSE Arca, Inc.  
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